翻訳と辞書 |
Littlewood subordination theorem : ウィキペディア英語版 | Littlewood subordination theorem In mathematics, the Littlewood subordination theorem, proved by J. E. Littlewood in 1925, is a theorem in operator theory and complex analysis. It states that any holomorphic univalent self-mapping of the unit disk in the complex numbers that fixes 0 induces a contractive composition operator on various function spaces of holomorphic functions on the disk. These spaces include the Hardy spaces, the Bergman spaces and Dirichlet space. ==Subordination theorem== Let ''h'' be a holomorphic univalent mapping of the unit disk ''D'' into itself such that ''h''(0) = 0. Then the composition operator ''C''''h'' defined on holomorphic functions ''f'' on ''D'' by : defines a linear operator with operator norm less than 1 on the Hardy spaces , the Bergman spaces . (1 ≤ ''p'' < ∞) and the Dirichlet space . The norms on these spaces are defined by: : : :
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Littlewood subordination theorem」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|