翻訳と辞書
Words near each other
・ Littleton/Mineral (RTD)
・ Littleton/Route 495 (MBTA station)
・ Littletooth sandeater
・ Littletown
・ Littletown, Arizona
・ Littletown, County Durham
・ Littletown, Liversedge, Kirklees
・ Littletown, New Jersey
・ Littleville Lake (Massachusetts)
・ Littleville, Alabama
・ Littlewick Green
・ Littlewood
・ Littlewood conjecture
・ Littlewood Nunataks
・ Littlewood polynomial
Littlewood subordination theorem
・ Littlewood Treaty Document
・ Littlewood's 4/3 inequality
・ Littlewood's law
・ Littlewood's rule
・ Littlewood's Tauberian theorem
・ Littlewood's three principles of real analysis
・ Littlewoods
・ Littlewoods Mail Order Stores Ltd v IRC
・ Littlewoods Pools building
・ Littlewood–Offord problem
・ Littlewood–Paley theory
・ Littlewood–Richardson rule
・ Littleworth
・ Littleworth Common


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Littlewood subordination theorem : ウィキペディア英語版
Littlewood subordination theorem
In mathematics, the Littlewood subordination theorem, proved by J. E. Littlewood in 1925, is a theorem in operator theory and complex analysis. It states that any holomorphic univalent self-mapping of the unit disk in the complex numbers that fixes 0 induces a contractive composition operator on various function spaces of holomorphic functions on the disk. These spaces include the Hardy spaces, the Bergman spaces and Dirichlet space.
==Subordination theorem==
Let ''h'' be a holomorphic univalent mapping of the unit disk ''D'' into itself such that ''h''(0) = 0. Then the composition operator ''C''''h'' defined on holomorphic functions ''f'' on ''D'' by
:C_h(f) = f\circ h
defines a linear operator with operator norm less than 1 on the Hardy spaces H^p(D), the Bergman spaces A^p(D).
(1 ≤ ''p'' < ∞) and the Dirichlet space \mathcal(D).
The norms on these spaces are defined by:
: \|f\|_^p = \sup_r \int_0^ |f(re^)|^p \, d\theta
: \|f\|_^p = \iint_D |f(z)|^p\, dx\,dy

: \|f\|_^2 = \iint_D |f^\prime(z)|^2\, dx\,dy= \iint_D |\partial_x f|^2 + |\partial_y f|^2\, dx\,dy

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Littlewood subordination theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.